Problem 20

(a) Calculate the number of cells in a hummingbird assuming the mass of an average cell is 10 times the mass of a bacterium. (b) Making the same assumption, how many cells are there in a human?

Solution

According to Figure 1.4 on page 10,

$$
\begin{aligned}
\text { mass of bacterium } & =10^{-15} \mathrm{~kg} \\
\text { mass of hummingbird } & =10^{-2} \mathrm{~kg} \\
\text { mass of human } & =10^{2} \mathrm{~kg} .
\end{aligned}
$$

Then the mass of an atom in the hummingbird (human) is $10 \times 10^{-15} \mathrm{~kg}=10^{-14} \mathrm{~kg}$. Divide the hummingbird (human) mass by the atomic mass to get the number of atoms.

$$
\begin{aligned}
\text { \# of atoms in hummingbird } & =\frac{\text { Hummingbird Mass }}{\text { Hummingbird Atomic Mass }} \approx \frac{10^{-2} \mathrm{~kg}}{10^{-14} \mathrm{~kg}}=10^{12} \\
\# \text { of atoms in human } & =\frac{\text { Human Mass }}{\text { Human Atomic Mass }} \approx \frac{10^{2} \mathrm{~kg}}{10^{-14} \mathrm{~kg}}=10^{16}
\end{aligned}
$$

